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Question 1: This question is concerned with propositional logic in Lean. [25 marks total]

a. How are the propositional connectives ↔ (if and only if) and ¬ (negation) defined in Lean?
[4 marks]

b. What are the deMorgan laws? Which part is not provable in intiutionistic logic? [6 marks]
c. Which of the following are propositional tautologies in Lean? (without using classical logic) ?

(i) P → (Q ∧R) ↔ (P → Q) ∧ (P → R)

(ii) (P ∧Q) → R ↔ (P → R) ∧ (Q → R)

(iii) P → (Q ∨R) ↔ (P → Q) ∨ (P → R)

(iv) (P ∨Q) → R) ↔ (P → R) ∨ (Q → R)

(v) (P ∨Q) → R) ↔ (P → R) ∧ (Q → R)

[10 marks]
d. In intuitionistic logic the principle “reductio ad absurdum” RAA, ¬¬P → P , is not provable in general

but it is provable for negated propositions, that is we can show ¬¬¬P → ¬P . How would you prove
this in Lean?

[5 marks]
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Question 2: This question is concerned with predicate logic in Lean. [25 marks total]

a. How do you prove an equality of the form a = a in Lean? How do you use an assumption of the form
h : a = b?

[5 marks]
b. Given a type of People and a predicate Loves, where Loves x y means x loves y.

variable People : Type
variable Loves : People → People → Prop

Translate the following English expressions into predicate logic using Lean syntax:
(i) Everybody loves somebody.
(ii) Somebody is loved by everybody.
(iii) Love isn’t transitive.
(iv) There are people who don’t love anybody.
(v) Love isn’t symmetric.

[15 marks]
c. How do you specify that A : Type is non-empty? How do you specify that it is empty?

[5 marks]
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Question 3: This question is concerned with reasoning about booleans and natural numbers in Lean.
[25 marks total]

a. Define a function

implb : bool → bool → bool

such that

∀ x y : bool,
(x = tt) → (y=tt) ↔ implb x y = tt

(you don’t have to prove it).
[5 marks]

b. Which of the following propositions about booleans are provable in Lean? For which ones can we prove
their negation? Can it happen that we cannot prove a proposition about booleans nor their negation?
(i) ∀ x : bool, ∃ y:bool, x ̸=y
(ii) ∃ x : bool, ∀ y:bool, x ̸=y
(iii) ∀ x : bool, ∃ y:bool, x=y
(iv) ∃ x : bool, ∀ y:bool, x=y

[10 marks]
c. We define a function by recursion over the natural numbers:

def foo : N → N
| zero := 1
| (succ zero) := 0
| (succ (succ n)) := succ (succ (foo n))

What are the values of foo 4 and foo 5?
Which of the following properties hold?
(i) foo is injective.

∀ x y : N, foo x = foo y → x=y
(ii) foo is surjective.

∀ y : N, ∃ x : N , foo x = y
(iii) foo has a fixpoint.

∃ x:N, foo x = x
[10 marks]
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Question 4: This question is concerned with reasoning about lists and trees in Lean. [25 marks total]

a. What is the definition of list as an inductive type in Lean?
[4 marks]

b. We define append as follows:

definition append : list A → list A → list A
| [] l := l
| (h :: s) t := h :: (append s t)

local notation l1 ++ l2 := append l1 l2

Which of the following propositions about ++ hold?
(i) ∀ l : list A, [] ++ l = l
(ii) ∀ l m : list A, l++m = m++l
(iii) ∃ l : list A, l++l = l
(iv) ∀ l m1 m2 : list A, l ++ m1 = l ++ m2 → m1 = m2

[8 marks]
c. We define trees whose leaves are labelled with natural numbers:

inductive Tree : Type
| leaf : N → Tree
| node : Tree → Tree → Tree

An example is

def t1 : Tree
:= node (node (leaf 1) (leaf 2)) (leaf 3)

Define a function tree2list : Tree → list N which collects all the leaves in a list.
E.g. tree2list t1 = [1,2,3]. [8 marks]

d. Given the following definition of permutation of lists in Lean:

inductive Insert : A → list A → list A → Prop
| ins_hd : ∀ a:A, ∀ as : list A,Insert a as (a :: as)
| ins_tl : ∀ a b:A, ∀ as as': list A, Insert a as as'

→ Insert a (b :: as) (b :: as')

inductive Perm : list A → list A → Prop
| perm_nil : Perm [] []
| perm_cons : ∀ a : A, ∀ as bs bs' : list A,

Perm as bs → Insert a bs bs' → Perm (a :: as) bs'

How do you prove Perm [1,2] [2,1]?
[5 marks]
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